
Toward Interoperable Grid
Infrastructure Software:

Basing Resource and User
Authentication in Legion on GSI

Marty Humphrey
University of Virginia

Department of Computer Science

http://legion.virginia.edu

Outline

• Brief review of Legion
• Legion security
• GSI
• Legion over GSI

• Successes
• Limitations of GSI
• Future

• Summary

Legion: a Distributed
Meta-Operating System

• Provides services of a traditional OS
• Process creation and control
• File system
• Security
• Resource management and accounting

• Runs on top of existing OSs
• Local systems provide the raw materials
• Legion combines the resources into a single

system (single virtual machine)

• Current version: Legion 1.7

The Object Model

• Legion is object-based
(does not mean C++)

• Legion objects:
• belong to classes
• are logically independent,

address-space-disjoint
• communicate via non-

blocking method calls
• are Active or Inert

B.f()

rval
A

Class of A

B

Class of B

Host 1

Host 2

Host 3

Shared Persistent Spaces

• Location transparent access to data and executing objects
(e.g., simulations)

• Single name space
• Usual Unix utilities, legion_ls etc.
• Files are objects - application specific interfaces

• Parallel file objects

• Manage data format heterogeneity

• C, C++, Fortran, Java interfaces - stdio and stream calls

Executing Computations

• legion_run, legion_run_multi - support
both legacy and Legion aware codes

• Legion selects site, move binaries,
monitor progress, etc.

• Parallel processing
• Bag of tasks
• Native MPI, Legion MPI, PVM, parallel

C++, Fortran (coarse-grain)

Executing an Application
(Starting an Object)

Protein
Class
Object

User

Protein
Code 2

Host
Object

Host
Object

Protein
Code 1

Some Legion Capabilities

• Fault tolerance (e.g., object replication)
• Collaboration via object “sharing”

• Active simulations; Datasets

• Debugging via message replay
• General event management facilities

• Generation and publish events; Selective
subscription to events

General Grid Security

• Require standard security services
• e.g., confidentiality, authentication, access control

• But: cross-domain
• No “super-user”
• No code-base trusted by all sites

• And: large-scale
• Must assume some compromised hosts
• Require site isolation

• Legion and Globus largely agree on:
• Basic model
• Public-key cryptography as enabling technology

Key Differences Between
Legion and Globus Security

• How are public keys certified?
• How is mutual authentication achieved?
• How is authorization performed?
• How is restricted delegation achieved?

Legion Identity

• Based on Legion extensible object naming
mechanism

• Every object has an RSA public key as part of
its name
• Instead of just Public Key, it could be X.509 cert

• “Name” of object is inseparable from Public
Key

Legion Certification Structure

BitString1, PubKey1
(“LegionClass”)

certifies

certifies

certifies

certifies

BitString3, PubKey3
(“Centurion200”)

BitString4, PubKey4
(“UserClass”)

BitString5, PubKey5
(“Fred”)

BitString6, PubKey6
(“carbon”)

certifies

BitString2, PubKey2
(“UnixHostClass”)

Legion Certification

• A Certificate Authority should not be required
(but can be supported)

• For some installations, CA is unnecessary
• Why should some unknown entity have to be

trusted?
• Why wait for a CA to get around to responding

with the certification?
• Certification is through Web of Trust

• Though rooted in LegionClass

Legion Login

BitString5, PubKey5
(“ Fred”)

legion_login

“ password”

Legion
credentials

Legion Credentials
• Single credential used for both identity and

authorization:
• Object or class restrictions
• Method restrictions
• Time restrictions

• Possession of multiple credentials imply
multiple roles

• “Login” returns unrestricted credential:
• [The bearer of this credential has all the rights of

Alice] signed Alice’s “Authentication Object”
• Legion credentials fully support restricted

delegation

Mutual Authentication

Requestee

“ Do Method M1”
Legion
credentials

Requestor

• Requestor authenticates
Requestee through Class
Object of Requestee

• Requestee authenticates
Requestor through:
• Class of Requestor
• Legion credentials are

signed by requestor’s
private key

Access Control

• Access policy locally defined and evaluated
• Method-by-method basis - MayI
• Use a standard policy or define your own

• Default: per-method ACLs based on users, groups

• Authorization based on credentials
• Delegated (restricted) credentials or bearer credentials

A

BB.foo()

MayI? foo()

No!

ok

Some Legion
Security Capabilities

• “All communication in the Grid due to my
scheduling request should be encrypted.”

• “I want to allow Alice to view the output of my
executing job in real-time.”

• “I don’t care where you store my temporary
files associated with my job, but they must be
encrypted on secondary storage.”

• “Schedule my job anywhere except host1,
host2, and host15, because I don’t trust them.”

Globus Security
Infrastructure (GSI)

• OpenSSl (ssleay) provides many crypto
routines and security-related mechanisms
such as:
• RSA, DES, Triple-DES, X.509

• GSI augments OpenSSL with:
• GSSAPI binding to SSL
• Delegation (impersonation)
• Some credential management routines

GSI Certification Structure

certifies

Host2

certifies

Host3

certifies

User1

certifies

Host1

certifies

User2

Certificate
Authority

GSI Mutual Authentication

Requestee

“ Fork my job”

Requestor

• GSSAPI
• SSL
• Certificate Authority

• Credential Forwarding
(“delegation” via
GSSAPI/X.509)

Why run Legion over GSI?

• CA arguably “more secure” than implicit
trust in LegionClass

• Legion components and Globus
components can directly interact
• E.g., a Legion scheduling component can

access the Globus LDAP server
• But there are some downsides...

GSI Limitations

• Is mutual authentication via SSL always
appropriate?

• What about delegation?
• GSSAPI/X.509 may impede restricted delegation

(it is an authentication and message privacy API,
not a delegation/authorization API)

• Authorization info in X.509?

• What about access control?
• Does GSI mandate GAA? Does GAA add value

over Legion’s Access Control?

Legion over GSI:
Current Approach

• Base “login” to Legion on valid GSI creds
• Don’t require specific password for both

Legion and Globus
• Base process creation on valid GSI creds

• Arguably, a stronger sense of security
• Use Legion credentials everywhere else

• Retain delegation capability
• Retain Access Control capability

Legion Login via GSI

legion_login

GSSAPI

Legion
credentials

1
2

BitString5, PubKey5
(“Fred”)

GSI
credentials

Authentication to Legion
Host Object via GSI

legion_run

GSSAPI

Legion
credentials

BitString6, PubKey6
(“ carbon”)

Security Standards

• Value of using GSSAPI in Legion?
• Legion user does not have to deal with

GSSAPI ugliness:
• Authentication is part of Legion

infrastructure
• Access Control is part of the Legion

infrastructure
• --> Writer of SuperScheduler in Legion can

focus on scheduling issues, not security
calls

Summary

• GSI has been utilized in Legion for:
• GSI-based session establishment (“login”)
• Enhanced security at time of process creation

• Issue: What does additional use of GSI
provide to:
• Average Legion Grid user?
• Legion installer and maintainer?

• Delegation capability is not as far along in
GSI as we need in Legion

